Những câu hỏi liên quan
Thảo Vi
Xem chi tiết
Akai Haruma
8 tháng 3 2021 lúc 21:32

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$

$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

Bình luận (0)
Akai Haruma
8 tháng 3 2021 lúc 21:36

Bài 2: 

Áp dụng BĐT Bunhiacopxky:

$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$

$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$

$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$

$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>

 

Bình luận (0)
Akai Haruma
8 tháng 3 2021 lúc 21:38

Bài 3:

Áp dụng BĐT Bunhiacopxky:

$2=(a^2+b^2)(1+1)\geq (a+b)^2\Rightarrow a+b\leq \sqrt{2}$

$(a\sqrt{1+a}+b\sqrt{1+b})^2\leq (a^2+b^2)(1+a+1+b)$

$=2+a+b\leq 2+\sqrt{2}$

$\Rightarrow a\sqrt{1+a}+b\sqrt{1+b}\leq \sqrt{2+\sqrt{2}}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{\sqrt{2}}$

 

Bình luận (0)
Thanh Tâm
Xem chi tiết
Le Thi Khanh Huyen
22 tháng 5 2017 lúc 7:23

3 số thực dương nhé.

Áp dụng bất đẳng thức Cauchy Schwarz dạng Engel có :

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{\left(a^2+2bc\right)+\left(b^2+2ca\right)+\left(c^2+2ab\right)}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1^2}=9\)

Dấu bằng xảy ra \(\Leftrightarrow\frac{1}{a^2+2bc}=\frac{1}{b^2+2ca}=\frac{1}{c^2+2ab}\)\(a+b+c=1\)

\(\Leftrightarrow a^2+2bc=b^2+2ca=c^2+2ab\)

Mong có ai giúp mình từ đẳng thức trên giải ra a=b=c.

Bình luận (0)
Thắng Nguyễn
22 tháng 5 2017 lúc 9:47

a=b=c ket hop voi a+b+c=<1 =>a=b=c=1/3 nhe

Bình luận (0)
alibaba nguyễn
22 tháng 5 2017 lúc 10:25

\(a^2+2bc=b^2+2ca=c^2+2ab\)

Ta có: \(\hept{\begin{cases}a^2+2bc=b^2+2ca\\b^2+2ca=c^2+2ab\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a+b\right)-2c\left(a-b\right)=0\\\left(b-c\right)\left(b+c\right)-2a\left(b-c\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a+b-2c\right)=0\\\left(b-c\right)\left(b+c-2a\right)=0\end{cases}}\)

Tới đây thì suy được ra là \(a=b=c\) rồi nhé Trần Thùy Dung - Trang của Trần Thùy Dung - Học toán với OnlineMath

Bình luận (0)
khong có
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2021 lúc 23:16

Ta chứng minh BĐT phụ sau:

\(\dfrac{a^3}{a^2+b^2}\ge\dfrac{2a-b}{2}\)

Thật vậy, BĐT tương đương:

\(2a^3-\left(2a-b\right)\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow b\left(a-b\right)^2\ge0\) (luôn đúng với a;b dương)

Tương tự: \(\dfrac{b^3}{b^3+c^3}\ge\dfrac{2b-c}{2}\) ; \(\dfrac{c^3}{c^3+a^3}\ge\dfrac{2c-a}{2}\)

Cộng vế với vế:

\(VT\ge\dfrac{a+b+c}{2}=3\) (đpcm)

Bình luận (0)
Kim Khánh Linh
Xem chi tiết
Nguyễn Minh Đăng
15 tháng 5 2021 lúc 7:30

Ta có: \(\frac{a^3}{a^2+b^2}=\frac{\left(a^3+ab^2\right)-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)

Tương tự CM được:

\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2}\) và \(\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)

Cộng vế 3 BĐT trên lại ta được: 

\(\frac{a^3}{b^2+c^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{a+b+c}{2}=3\)

Dấu "=" xảy ra khi: a = b = c = 2

Bình luận (0)
 Khách vãng lai đã xóa
Đoàn Tùng Lâm
29 tháng 4 2022 lúc 22:45

Bài này cách làm ntn

Bình luận (0)
socola Lê
Xem chi tiết
library
Xem chi tiết
Bích Ngọc Vũ
Xem chi tiết
I am➻Minh
Xem chi tiết
Phạm Thành Đông
21 tháng 4 2021 lúc 20:26

Đặt \(A=\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\left(a,b,c>0\right)\).

Ta có:

\(\frac{a^3}{a^2+b^2}=\frac{a\left(a^2+b^2-b^2\right)}{a^2+b^2}=\frac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\).

Vì \(a,b>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(a^2+b^2\ge2ab\).

\(\Rightarrow\frac{1}{a^2+b^2}\le\frac{1}{2ab}\).

\(\Leftrightarrow\frac{ab^2}{a^2+b^2}\le\frac{ab^2}{2ab}=\frac{b}{2}\).

\(\Rightarrow\frac{-ab^2}{a^2+b^2}\ge\frac{-b}{2}\).

\(\Leftrightarrow a-\frac{ab^2}{a^2+b^2}\ge a-\frac{b}{2}\).

\(\Leftrightarrow\frac{a^3}{a^2+b^2}\ge a-\frac{b}{2}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a=b>0\).

Chứng minh tương tự, ta được:

\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2}\).với \(b,c>0\)\(\left(2\right)\)

Dấu bẳng xảy ra \(\Leftrightarrow b=c>0\).

Chứng minh tương tự, ta được:

\(\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)với \(a,c>0\)\(\left(3\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a=c>0\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\)\(\ge\)\(a+b+c-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}\).

\(\Leftrightarrow A\ge\frac{a+b+c}{2}\).

\(\Leftrightarrow A\ge\frac{6}{2}\)(vì \(a+b+c=6\)).

\(\Leftrightarrow A\ge3\)(điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\a+b+c=6\end{cases}}\Leftrightarrow a=b=c=2\).

Vậy nếu \(a,b,c\)là các số thực dương thỏa mãn \(a+b+c=6\)thì:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge3\).

Bình luận (0)
 Khách vãng lai đã xóa
Le Thi Khanh Huyen
Xem chi tiết
zoombie hahaha
31 tháng 8 2015 lúc 19:13

3

đúng

4

Sai

Bình luận (0)
Le Thi Khanh Huyen
Xem chi tiết
zoombie hahaha
31 tháng 8 2015 lúc 19:14

1

đúng

2

Sai

Bình luận (0)